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J .  Phys. A: Math. Gen. 23 (1990) 3227-3244. Printed in the UK 

Derivation and quantisation of Solov'ev's constant for the 
diamagnetic Kepler motion 

M Kuwata, A Harada and H Hasegawa 
Department of Physics, Kyoto University, Kyoto 606, Japan 

Receibed 27 November 1989. in final form 26 March 1990 

Abstract. We report that the hyperbolic form of the Runge-Lenz vector A, i.e. . i ( A ) =  
4 A Z - 5 A i ,  which was shown to be an approximate constant of the diamagnetic Kepler 
motion by Solov'ev, can be deduced as the lowest non-trivial Birkhoff-Gustavson normal 
form for a resonant set of generally four  oscillators subject to a constraint. Its special case 
p d ( = m )  = 0 (i.e. the case of vanishing magnetic quantum number) is shown to agree with 
the result of Robnik and Schriifer derived from two oscillators. A systematic scheme of 
the semiclassical quantisation (the torus quantisation) is discussed on the explicit construc- 
tion of the genus-one topology, by means of which all the possible, equivalent quantisation 
formulae are deduced. 

1. Introduction 

A great deal of interest has been shown recently in studies of quantum spectra of the 
hydrogen atom subject to a magnetic field in connection with the correspondence 
problem between classical dynamics and  quantum mechanics, in particular, with the 
problem of chaos (see a number of works reported in the book edited by Taylor (1988)). 
One of the motives for this interest was the paper by Solov'ev (1981) who established 
for the first time the explicit expression of the notion approximate constant of motion 
which had been anticipated to exist in the Hamiltonian function pertinent to the 
problem (Zimmerman et a1 1980, Clark and  Taylor 1980, Clark 1981, Robnik 1981; 
see also a recent review by Hasegawa et a1 1989). 

An approximate constant of the motion associated with a series-expanded Hamil- 
tonian function, H =E:=, H " ' ( p ,  q )  canonically transformed from a given function, is 
defined by the quantity '\'''(p, q )  whose Poisson bracket with the j t h  truncated part 
( i s j )  H" '  = Z:=, H " ' ( p ,  q )  of H vanishes, where the lowest term H"=" (the unper- 
turbed H )  is assumed to represent a set of harmonic oscillators. Such was initiated by 
Birkhoff (1927) for non-resonant oscillators (i.e. n harmonic oscillators whose frequen- 
cies w ,  , w 2 ,  . . . , w ,  satisfy no linear relations I: a,w, = 0 with integer coefficients a,; 
note, in this case ,4"'= H'" only), and  later generalised by Gustavson (1966) for 
resonant oscillators, say rth fold resonance (i.e. r linear independent relations Z aTvw, = 
0 exist with integer coefficients a,, ). Gustavson's work was concerned with a concrete 
example of the Henon-Heiles pair of oscillators for which n = 2 and the equal frequen- 
cies, the so-called 1 : 1 resonance, must yield generally first-fold ( r  = 1)  resonance for 
every truncated Hamiltonian H" ' ,  j > 2 .  It ensures one  approximate constant in 
addition to the unperturbed Hamiltonian of the form It=, $ ( p t + w ' q t ) .  An important 
significance of Gustavson's theorem is that such approximate constants that exist yield 
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the analytic curves to simulate the invariant tori of a non-separable dynamics in the 
context of Kolmogorov, Arnold and  Moser (the so-called K A M  theorem; see Lichtenberg 
and  Lieberman 1983). 

The discovery of the approximate constant for the diamagnetic Kepler Hamiltonian 
in terms of the Runge-Lenz vector A of the form , I ( A )  = 4A‘- 5A: by Solov’ev (1982), 
which was not made in the above context, should therefore be subject to theoretical 
investigation as to whether it can be deduced by the general procedure of Gustavson. 
The purpose of this paper is to discuss an affirmative answer to this question. We note 
here that the previous reports on the same problem have been either by numerical 
demonstrations (Reinhardt and Farrelly 1982, Hasegawa et a1 1984, Saini and Farrelly 
1987) or, a precise derivation of the normal form but without relating it to . I ( A )  
(Robnik and  Schriifer 1985). Our result in section 2 shows that the diamagnetic Kepler 
Hamiltonian can be converted into that of a system of four oscillators with equal 
frequencies (i.e. 1 :  1 : l :  1 resonance) subject to a constraint, thus reducing the degree 
of freedom by one, whose lowest non-trivial normal form agrees precisely with that 
predicted by Solov’ev and  the approximate constant with Solov’ev’s form .I( A ) .  

In section 3 we treat the special situation pd = 0 where pm is another (exact) constant, 
i.e. the angular momentum component along the magnetic field. We show that the 
normal form then reduces to the result of Robnik and Schrufer (1985): in this situation, 
the initial four-oscillator Hamiltonian reduces to that of the two oscillators in the 
parabolic coordinate system adopted by the above authors, which yields a systematic 
analysis of the choice of the action and angle variables. In the lowest-order non-trivial 
normal form, every action integration is shown to be expressed in an  elliptic integral, 
implying that the underlying K A M  torus is typically of the topology with genus one  
(i.e. the doughnut structure). Moreover, the action integral to this order can be 
represented as the Cauchy integral on a complex Riemann surface which allows several 
equivalent but different forms of the representation. We show that the quantum number 
entering the quantisation formula must be a half-odd integer. Also, we clarify some 
puzzling features of the formula that Solov’ev proposed. 

2. The normal-form Hamiltonian with four oscillators 

We follow Kustaanheimo and Stiefel (1965) by introducing a mapping of a four- 
dimensional space R4 with local coordinates ( u 1  , U?, u 3 ,  u 4 )  onto the physical space 
R 3  with coordinates ( x I ,  x 2 ,  x3) by means of the transformation T (hereafter called 
the KS transformation): 

where U and x are two column vectors in R4 

U = Y U , ,  U 2 9  u3, 4) x = Y X I  , x2, x j  7 0) 

and  T satisfies orthogonalities 

T ~ T = ~ ~ T = / U / ’ ~  
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('T denotes the transpose of T, and Iul2 = U: + U: + U: + U:). The fourth component of 
x as the image of the map of U identically vanishes, and  hence the nonlinear relations 
are introduced, i.e. 

7 7 , -  

X I  = U;- U S -  Uj+ U, X? = 2( U ,  U2 - uj U,) x3 = 2 ( u ,  U 3  + u2u'l) 

defines a map R4+R' which is onto but not one-to-one. Accordingly, the kernel of 
the map forms a one-parameter family, and  Kustaanheimo and Stiefel (1965)  showed 
that this family is identified with a subgroup of rotations of the form 

cos 4 0 0 -sin 4 
0 cos 4 sin #J 0 
0 -sin 4 c o s d  0 

sin 4 0 0 cos d 

U + U' = R,u (4) 

or, in other words, the inverse map R'+ R4 can be defined up  to the equivalence class 
of U vectors in R 4  with U'= U by the above type of rotations. 

For classical dynamics of a particle in R3,  when described by the U coordinates 
with four degrees of freedom, the above equivalence class can be characterised by 

- U4pl + u3pZ - u$3+ ulp4 = 0 ( 5 a )  

P" = fmwwd ( 5 b )  

where 

is a canonical momentum vector conjugate to U. It says that the angular momentum 
L, associated with the rotation (4) vanishes, or, in terms of the ordinary angular 
momentum components L,, in R4, that 

L14= L2.1 uIp4- = - %p2 ( 6 )  

which is shown to ensure the identity 

that is to say, the transformation between the phase spaces R 3  x R3 and R 4  x R'l under 
the constraint (5)  or ( 6 )  is canonical. For more detailed properties of the constraint, 
see Boiteux (1973)  and Cornish (1984a, b).  The canonicity ( 7 )  together with the KS 

transformation (1) enables us to write 

1 
2r P* = - TP, ( 8 a )  

where 

P x  = YPqP,?P,?o). ( 8b )  

Let us now write the diamagnetic Kepler Hamiltonian as 

1 2  Y Y 2  3 1 H = - p . ;  +- pd +- (x- - (x * + ) 2 )  -- 
2 2  8 r 

where = unit vector along the magnetic field B, y =strength of the magnetic field in 
atomic units (Bo  = 2.35 x lo9 Gauss), pd  = component of the angular momentum L along 
B (constant of the motion). 
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An application of the KS transformation ( 1 )  and its momentum version (8) to this 
Hamiltonian is shown, when x, is chosen as the coordinate along the magnetic field, 
to yield a n  unharmonic oscillator Hamiltonian of the form 

If, further, the time variable t of this dynamics is changed to s through 

the Hamiltonian ( 1 0 )  is multiplied by the above factor to eliminate the Coulomb 
singularity, which is called regularisation (the so-called Levi-Civita regularisation, see 
Reinhardt and  Farrelly 1982). The stationary condition of the classical dynamics on 
an  energy surface H = E then becomes 

X =  $(pt+w'u2)+2y' lu12(  u f +  u f ) ( u I +  uf)  = 4  

w 2  = 4 y p ,  - 8 E  ( > O  for a bounded Kepler motion) 

( 1 2 0 )  

with 

( 1 2 b )  

the expression %? being regarded as a Hamiltonian of u oscillators. It comprises the 
harmonic unperturbed part plus the sextet unharmonicity due to the diamagnetism, 
thus allowing a direct application of the Birkhoff-Gustavson procedure. It can be seen 
from the unperturbed part 2''' that the problem of normalisation belongs to Gustav- 
son's third fold ( 1 : l : l : l )  resonance, and  hence three extra constants of the motion 
may exist (one is reduced by virtue of the constraint (5) and  another is identified with 
pm ( = L , ,  = L23 in (6)).  Hereafter, the linear Zeeman term is omitted by absorbing it 
into the energy E. 

We need to determine the part XeliF from X which meets the normal form condition: 

(13) D X ,  F 3 {X \  F ,  3P2'} = 0 

where the symbol { ,} denotes the Poisson bracket and  the operator D 

It is useful to introduce the complex variables 

1 
z ;  = c'c- of zl j = 1 ,  . . . , 4  (15) 

so that the operator D can now be expressed as 

The kernel of D( = { f l  Df= O } )  can be determined by monomials z"'z*" = I l l  z : ' ~ z ~ " ~  
such that 

Dz"'z*" = -iw 1 (m, - n, )zmz*"  = 0 
I 
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that is, the monomial zmz*" belongs to ker D, if and only if 

( m, - n, ) = 0. 

The formulation is based on Robnik (1984). 

I 

The sextet unharmonic part of the Hamiltonian in (12a) ,  i.e 

RI6'= 2y2JUl2(u:+ u : ) ( u : + u ; )  

is then shown to have its normal form 

1 x {(lzll' + Iz4l2)( lz212 + Iz112) + Re( z;'+ zz)( zf'+ zf')} 

which reduces to 

323 1 

(17) 

by using the two relations for the angular momentum L in R3:  

2 L 2 =  (~zl~'+/z4~')(~z2~~+~~1~2)-Re(zf+z~)(zf2+zf~)+L~ (19a) 

L:( = p i )  = (1ZJ + /z4/')? - 1.: + z:!? 

= (/z,/'+/z,12)?-/zf+z:/' ; = ? l B  (19b) 

(the latter two identical expressions stem from the constraint ( s a )  or  (6) ) .  Or, in terms 
of the canonical variables in R4, 

Expression (20) is now connected with the Runge-Lenz vector A of the Kepler 
motion defined by some vectors in R3. The key formulae for this connection are: 

and 

The latter two identities can be deduced from the KS transformation and its momentum 
versions (1) and ( 8 a )  applied to A,, if it is recalled that the magnetic axis z is identical 
to the first component x1 in R'. Thus, by inserting these two identities in (22) and the 
relation (21), we get 
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where 

A(A) = 4A' - 5A: 

( a  Runge-Lenz hyperboloid). U p  to this order of truncating the normal form of X ,  
therefore, the Runge-Lenz hyperboloid *\(A) given by (236) which is involutive with 
X"' = i ( p ' +  w'u ' ) ,  as well as with p d ,  represents an  approximate constant of the Kepler 
motion. Also, in terms of the starting Kepler Hamiltonian (9) (following the argument 
of Robnik and  Schriifer 1985), 

- - - [ 1 --% N 6  { 1 + .\(A) + (E)'}] N = ( -2E) - '  ' 
2 N' 

It implies that the diamagnetic correction to the Rydberg energy is given by 

16 N4{ l+ , \ (A)+($)2}  

which lifts the degenerate Rydberg multiplet with energy -1/2N'. This completes the 
derivation of Solov'ev's result by means of the Birkhoff-Gustavson normalisation 
procedure. 

3. Case for p+ = O  and the semiclassical quantisation 

As we have mentioned already, the angular momentum component L,( =pd) is identical 
to L , ,  (=L13) ,  whence 

L; = i( z , z $  - z ~ z , )  = i (  z.zF - z r z , )  = 0 

implies that in the polar representation of the z variables 

z, = dT  e") j = 1 , 2 , 3 , 4  

the following identities hold: 

41 = 44 and & =  43. (26) 
In this situation, the two two-dimensional oscillators composed of ( U , ,  U,) and ( u 2 ,  U,) 
become one-dimensional ones: there exist two Cartesian coordinates (U, U )  and the 
respective conjugate momenta ( p L , ,  p L  ) such that 

7 ,  7 9 -  7 , 2 ,  
U - =  U,+ u ~ , P F , = P ~ + P :  and u- = U 5 + U ;, p ;, = p :  + p ;  

with which (12a )  becomes 

X = $ ( p : + w ~ U 2 ) + i ( p ;  + w"v')+2y'(u'+ u')u2u'.  (12a')  

Also, 1 *A, associated with the z component of the Runge-Lenz vector expressed in 
(22) becomes 

(22') 
Expression (12a ' )  is the diamagnetic Kepler Hamiltonian converted from (10) for 

p +  = 0 in terms of the parabolic coordinate system, and  (apart from a scaling factor) 

1 + A ,  = i ( p f  + w ' u ' ) .  1 - A - = ' (  - 4 Pu ' + w ' u ' )  
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is identical to the one adopted by Robnik and Schriifer (1985).  Thus, one expects that 
our result ( 2 4 )  with p+ = 0 should be contained in their BG normalisation procedure, 
identifiable with it to lowest order, although the proof is not straightforward. One can 
rewrite the resulting XNF in terms of the two action variables ZI and Z2 (each associated 
with the U and v oscillators, respectively, of the parabolic coordinate) up to sextet 
order in z variables as follows: 

where w is given in ( 1 2 b ) .  The identity of this expression with that of Robnik and 
Schriifer is then easy to see. It is a prototype normal-form Hamiltonian for two 
oscillators in 1:l  resonance, if written in the form 

X N F = w ( Z I + Z 2 ) { 1  +A2Z1Z2(1-k” sin2(4’-4,))) (28a  

A = real constant and O s  k”< 1 ( k ’ 2 = $  in ( 2 7 ) ) .  (28b 

First, we can replace the two sets of the action-angle variables (II, 41) and ( I 2 ,  42 

where 

This yields a systematic method of ‘torus quantisation’, which we now discuss. 

by &II + 12), dl  + 4’) and ( + ( I 2 -  11), d2- b l )  by noting { I ,  * 12, 41 F h>= 0, since 
{ I , ,  4,) = 6,, so that 

Here 
~ ~ ~ = 2 n w { l + h ~ ( n ~ - ~ ~ ) ( 1 - k ”  Sin2 4)}. (29 )  

z = f (  1’ - ZI) and 4 = 4 2 - 4 ,  (30 )  

n =+(Il + 1’) (31 )  

are a canonical set of the action-angle variables, and the other action 

is a constant of the motion owing to the cyclicity of its conjugate angle variable. Thus, 
%NF in (29) contains two constants, namely n (the unperturbed 2) and the expression 
for i.e. 

( n2 - Z’)( 1 - k” sin’ 4 )  
which should be equated to a newly defined approximate constant. Let us define this 
by setting the above quantity equal to n 2 k 2 ( 1 + A ) (  L O ) ,  where A is a real parameter 
expressing a Solov’ev’s constant value of A = A(A)  so that 

( 3 2 a )  n2k’( 1 + A )  = ( n2 - Z2)( 1 - k” sin 4 )  
with 

k2 E 1 - k’2 O s  k 2 s  1 (see ( 2 8 6 ) ) .  
Then, 

( 1 - k’’ sin’ 4 
Z = I ( + ) = n  1 -  ( 33 )  

The action integral is accordingly given by 

where 

(346)  
T I 2  for - 1 s A S O  

4o = {sin-‘ 41 - ( k2/  k ” ) A  for 0 < A s A,,, = kI2/ k2 .  
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It is now straightforward to quantise the parameter A by means of the ordinary 
quantisation rule of Bohr, Sommerfeld and Maslov. However, it is important to note 
that the pertinent action integral formula (34a) is not a unique choice, but there exist 
other expressions of similar formulae. Here we show two such expressions and discuss 
their mutual relationship: 

In (35)  the upper bound Bo of the integration is given by 

for - 1 S A G O  
for 0 < A S A,,, = kr2/ k2. (35a) 

sin-’ J i T X  
go=  L 2  

On the other hand, the range of the integration in J”’(A) must be divided into three, 
i.e. 6 E [0, a , ] ,  [ T  - 6,, T I ,  and [a,, T - a2] as can be seen in figure 1, which is due 
to the fact that the integrand becomes infinite at 6 = 6, = sin-’ k <+T and T - 6,. 
We shall denote the first and the third parts of f 2 ’ ( A )  by Ji2’(A) and J\:j)(A) so that 

Jr2’( A )  = [T/o“ d T d 6  1 - k-2 sin’ 6 
for - l < A < O  

otherwise 10 

(36b) [c’ J I . 7  1 - k-‘sin2 6 d 6  
for 0 < A s kr2/ k2 

J;;;(A) = T 

0 otherwise. 

These two action integrals are just what Solov’ev obtained from a geometrical consider- 
ation to identify the integrand with the component of the angular momentum perpen- 
dicular to z, L,( 6), expressed as a function of the polar angle 6 of the Runge-Lenz 
vector A. 

u ( 3 )  A <  0 ui31 A.0 

f ,MI = GGiT1 
Figure 1. Indication of the ranges of Solov’ev’s action integration (36~1, b )  in terms of the 
effective potential U( 4): f * ) ( A )  = ( 1 / 2 ~ r )  $ L a (  4) d6, LA( 4) = dn2 - U( 4). The three 
ranges of the integration denoted by 1, I1 and I11 follow the notation adopted by Cacciani 
et al (1988). 
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First, we note that the starting action variable I which enters the action integral 
(34a) is identified with the z component n A ,  (see (22')), and that for Lr = 0 there are 
three components of such vectors which could be the possible candidate for the action 
variable: these are nA;,  n A ,  and L _  ( A -  = and LA = v'Lf + Lf) .  Let us denote 
them by I, PI  and P r ,  respectively, thus 

I = nA,  P ,  = nA_  P2= L - .  (37) 

These are not independent of each other, but linked by the fundamental relation (21) 
of the vectors A and L so that 

I '+PPf+Pi=n2 (38)  

(=4 /w2;  see ( 1 2 a ) ,  (12b)).  It suggests that, besides the action-angle variables ( I ,  4), 
two other choices of such variables exist in  which PI and  Pr play the role of relevant 
action variables, and we show that the two action integral formulae (35) and (36) just 
provide these choices. We prove this result by constructing the canonical transforma- 
tions 

(1, 4 ) + ( p I ,  e)  and (1,4)+ (P2,  6) (39) 

explicitly to satisfy the formulae ( 3 5 )  and (36),  respectively. 

Proof,jirst step. Let us consider ( 1 9 a )  for L; = 0 which also implies 4l = 44 and 
by recalling (26). This provides the relation 

= d3 

~ ~ ( = ~ ~ ) = ( n ' - 1 ' ) s i n ' 4  4=42-41 (40) 

~ : = ( n ' -  I ? )  cos2 4. (41) 

also, 

p' - n 2  - I' - 
1 -  

These two relations yield the angle variable 4 as the function of ( I ,  P I )  and ( I ,  P') as 
follows: 

Second step. Consider a possible generating function F(1,  P I )  to derive the canonical 
transformation ( I ,  4 )  --z ( P I ,  e),  where the old and  new coordinates which conjugate 
to I and PI are given, respectively, by 

dF dF 
(#)=--- e=-. 

d l  a PI 

In view of the first equation of (421, such F must be of the form 

whence 

(43) 

(44) 
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Or, with a proper choice of constant, I’= (n’- Pf) cos’ 8. A similar argument shows 
that for the canonical transformation ( Z, 4 )  + (P., 6) the generating function F (  Z, P2) 
and the new angle variable 6 are given by 

Third step. We combine the derived relations (45) (or (47)) with the approximate 
constant .Z(A) of Solov’ev to obtain the representation of P, (or P2) as a function of 
the conjugate angle variable 8 (or 6). Namely, 

n2kZl\ = k“P?  - k’l’ (48) 

’ -  ( 1-k’s in26  
p - n *  1-  

p:= n2( 1 + 
1 - k-’sin’ 6 

The two action integrals J ” ’  = $ P I (  0 )  del277 and J‘” = 4 P2( 6) d-91277 yield the explicit 
results (35) and (36), respectively. This concludes our proof. 

The most significant conclusion which one can draw from the above proof is the 
canonical equivalence of the three action integral formulae (34a),  (35) and  (36), and 
can be expressed simply as 

Z(4) dc$ = Pl(8) d 8  = P2(6) d 6 .  (52a) 

Hence the three (actually four) integrals J ( A ) ,  J “ ’ ( A )  and J‘2’(Ai)(J\’’(A),  J‘,fi(A)) are 
equal each to each apart from sign and additional constant factor. This is demonstrated 
directly in figures 2(a-c) .  More precisely, one has 

(52b) J“’(,i) = n - J(,\) - 1 C .2 G h,,, = kIz/ k2 

J‘,’’(A)= J “ ’ ( . 2 )  J;f:( A )  = 0 - 1 S . I G O  (52c) 

J;;;(-I) = J ( A )  JI”( ‘2) = 0 0 h S A,,, . (52d) 

The best way to convince ourselves of these results would be to exploit the theory of 
Jacobian elliptic functions and  their integrals, which we have outlined in the appendix. 
The fact that any of the above action integrals reduces to an  elliptic integral (with a 
common integrand but over different ranges) can be seen by the change of variables: 
sin’x = w (x stands for 4, 8 and 6) in the integrations. 

An important background idea for our discussion is that elliptic integrals can be 
classified in terms of Cauchy integrals of complex, one-valued analytic functions on 
a doubly connected Riemann surface with genus unity. This topological structure of 
a dynamics with two degrees of freedom is often cited for two uncoupled harmonic 
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-n 

I 

Figure 2. Relations between three action integrals 
J ( . 2 ) ,  J " ' ( . 2 )  and J'*'(.i). J(.I) and J"'(.i) are 
continuous functions in terms of .I. The Solov'ev's 
action integral J '2 ' ( . 2 )  shows discontinuity at .I = 0: 
J'"(.I) = J"'(,I) for :I i 0,  f2' = J ( . I )  = n -J'"(.\) 
for .2 > 0. 

B K  - K  0 K - K  A '' 0 

( 0 )  ( b )  
Figure 3. The Riemann surface of the analytic function P (  i) of the complex coordinate 
i = a + ip +constant on which the two-dimensional two-torus structure is represented; 
m = 0 and ( a )  .I< 0, ( b )  .2 > 0. A more detailed description is given in the appendix. 

oscillators by the name of K A M  torus (e.g. KAM surface in Lichtenberg and Lieberman 
(1983)). Our result here suggests that, when coupled by a polynomial potential up to 
fourth order and if the unperturbed oscillators are in 1 : 1 resonance, the perturbed 
dynamics within the lowest non-trivial normal form obeys generally the same topology 
with the action integral written as an elliptic integral (see figure 3). 

4. Result and discussion 

We present our torus quantisation formula of the diamagnetic Kepler motion which 
discretises Solov'ev's constant h for m (magnetic quantum number) = 0: 

J = J ( A , ) = j + i  

with a given quantised value of n = N, N = 1 ,2 , .  . . 
j = 0, 1, . . . , N - 1 (53a) 

(53b) 
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(equivalent to the Rydberg condition E = -1 /2N2) .  Or, in terms of the other action 
integral J“’,  

(54a 1 
(546) 

J‘ ” = J ’  I ) ( ’ i , , )  = j ’ + ;  

which satisfies j ‘ =  N - 1 - j  by virtue of (526). 

j ’ = o , l ,  . . . ,  N - 1  

The quantised energy exact up  to y z  is, accordingly, 

1 y z  +- ~ ~ ( 1  +A,) .  
2 N ’  16 E N . , , m = O  - 

Specific points of this quantisation condition should be pointed out as follows. 
( i )  The action integral is bounded for a given constant value n = N (principal 

quantum number) so that the quantum number j may take only a finite number of 
allowed values, that is, precisely N values. 

(ii) All the a values (the Maslov index) in J = j + a a  are equal to 2: thus the 
quantum number which defines a discrete energy spectrum (the quadratic Zeeman 
spectrum without n mixing) must be half-odd integral. 
Our  first discussion is to clarify these two points. 

The clue to establishing both ( i )  and ( i i )  of the above result is given by the identity 

J ( - A ) + J ” ’ ( A )  = n ( =  N :  positive integer). (55) 

A proof of this, based on analytic function theory, is presented in the appendix where 
the two actions J ( ” ( A )  and J ( A )  are shown to be expressed as two Cauchy integrals 
of a common analytic function but along two distinct elementary cycles characteristic 
of genus unity, as in (A13) and (A14). Once (55) is admitted, then the boundedness 
of these actions becomes obvious in view of their positivity: O-SJ(~I~), J ‘ ” ( , ~ ) s  N.  
Further, the quantised values of these actions, i.e. the quantum numbers j for J(.I) 
a n d j ’  for J ( ” ( A ) ,  must take precisely the same set of values in order that the quantised 
A thus determined in two-fold ways be identical. The identity (55) then implies a 
reflection symmetry of the finite set of the quantised action in the interval [0, n ]  about 
its midpoint. 

Consequently, two possibilities arise about the Maslov index a for j and a’ for j ’ :  
either a = a’= 0 or a = a’ = 2, and j +j ’= N in the former case and  j + j ’  = N - 1 in 
the latter. But, the former case is excluded because the action integration in the 
representations (A13), (A14) involves real caustic points (the four vertex points A, B, 
C, D, in figure 3; see also a subtlety about these caustic points discussed after (A13) 
and (A14) in the appendix). This is our special emphasis, because several authors who 
have treated the problem have arrived at the same conclusion (for example, Cacciani 
et a1 (1988) and Waterland et a1 (1987)) but without giving a coiivincing reason. A 
confusing point in this problem is that the pertinent action integration involves two 
separate regions; one associated with the ‘libration’ character and  the other with the 
‘rotation’ character; for example, in the integration (35) for J’”(>A) the region .\E [-I, 01 
is associated with libration and A E [0, . Imax] with rotation (see an article by Delande 
and  Gay in Taylor (1988)). But this should not admit the distinction between the 
Maslov index value for quantising with a full-integral and  with a half-odd quantum 
number, thus making the concept of libration against rotation meaningless in the present 
example. The convincing reason we find for this result is that there exist two action 
integrals, quantising ‘I in an  ‘ascending’ way and a ‘descending’ way, both equally 
allowed to give the same quantised values. 
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Solov’ev (1982) has proposed his torus quantisation formula in the same problem 
in terms of the canonical set (6, Ll ) ,  which reads (for p+ = 0) 

J‘ ,2’ (Ak)  = k + i  k = 0 ,  1 , 2 , .  . . (56a)  

J‘ , f ; (&)= k ’ + $  k’=O, 1 , 2 , .  . . . (566) 

The reason for this puzzling feature of a ‘two-fold’ quantum number can be visualised 
in figure 2(c): that is to say, the action integral f 2 ’ ( A )  is a discontinuous function of 
A at A = 0 (52c, d ) .  An obvious remedy for this discontinuity is to replace either one 
or the other portion of the function, Ji2’(A) (or #/(A)), by n -Ji2)(A) (or n -Ji;/(A)), 
making it identical to J(A) (or J(’’(A)). This has been done, indeed, in the analysis 
of experiments carried out by Cacciani et a1 (1988) on an intuitive basis. 

Finally, we add a brief discussion about higher-order perturbation effects on the 
KAM tori. This is not a systematic treatment of the BG normal forms: Instead, an 
obvious consideration that an analytic simulation of the tori could be made by taking 

Figure 4. The Poincare surface of section of z = 0, P, - p plane in the cylindrical coordinate 
system for the diamagnetic Kepler motion: ( a ) ,  ( b ) ,  (c )  are those computed by integrating 
the equations of motion, and ( a ) ‘ ,  ( b ) ’ ,  (c)’ are those simulated by taking intersections of 
%‘,,and A(A) = A. ( a ) - ( a ) ’  m = 0 ,  B =2,  E = -1; ( b ) - ( b ) ’  m = 0 ,  B =2,  E = -0.7; (c) - (c) ’  
m = 0, B = 2, E = -0.3 in the atomic unit. 
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intersections between the two constants is extended within the lowest non-trivial normal 
form but one step higher than that treated so far (i.e. the intersections between = 4 
and  .I( A )  = .I). Thus we simulate them by taking the intersections between XNF = 4 in 
(23a)  and  . 4 ( A )  = .2 in (236).  Figures 4(a-c) show such drawings, which are compared 
with the surface of sections computed from the diamagnetic Kepler trajectories: these 
demonstrate the coexistence of chaos and  undestroyed tori (so-called 'remnants', 
Reinhardt and  Farrelly (1982)) from our previous studies (Hasegawa er a1 (1984)). 

Acknowledgments 

H H  wishes to thank staff members of the Institute of Theoretical Physics, University 
of California Santa Barbara for their hospitality. This research was supported in part 
by the National Science Foundation under Grant no PHY82-17853, supplemented by 
funds from the National Aeronautics and  Space Administration. 

Appendix. Jacobian elliptic function and the proof of equalities in (52a-d) based on 
Erdelyi et af (1953) 

Our starting point is the definition of the sn function 

w = s n ( u ,  k )  

by 

as the solution to the first-order differential equation 

The other related functions are cn(  U ,  k)  and  dn(  U, k )  which satisfy 

(A3) 
The parameter k is said to be the modulus and k' = JW the complementary modulus. 
The first-class elementary properties of these functions are: 

cn'( U ,  k )  + sn'(u,  k )  = 1 dn'(u,  k ) +  k'sn'(u, k )  = 1. 

d 
-SH(U, k ) = c n ( u ,  k)dn(u ,  k )  
d u  i A4) 

d 
- d n  ( U ,  k ) = - k'sn ( U ,  k ) cn ( U, k)  
d u  (A61 

and 

s ~ ( - u ,  k ) = - s n ( u ,  k )  c n ( - U )  = cn(  U )  dn(  - U )  = dn(  U ) .  (A71 
Another class of the basic properties is that a change of the modulus 

k + k '  or k + k - '  or k - + k ' - '  or k - i k l k '  or k + k ' l i k  
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in an  elliptic integral gives rise to a linear combination of elliptic integrals with the 
original modulus k. The simplest example is given by 

sn(u ,  k-I) = ksn(u /k ,  k ) .  (AS) 

We can now show a direct proof of the canonical equivalence of the action angle 
variables ( I ,  d) ,  (PI, 0 )  and ( P2, 6) expressed in (52a) ,  i.e. 

) '  ' di?. (A9b) 
= ( l +  .1 

1 - k-'sin' 6 

Prooj  Let sin C$ = dn(u, k ) /k '  in the left-hand side of (A9a).  Then, cos C$ d 4  = 
-(k'/k')sn(u, k)cn(u,  k )  d u  by differentiating it. But, since 

1 ik 
k '  k' 

= - (k" - dn'( u, k) ) ' ' ?  = - cn( u, k) 

one gets 

d 4 = i k s n ( u ,  k ) d u = i ( l - d n ' ( u ,  k ) ) '  ' d u  

- - i (  1 - k" sin' 4 ) '  ' du  

hence 

Thus, 

d d  = i[k" - k'n - dn'( u, k)] '  ' d u  
1 - k" sin' 4 

= [ k'( 1 + -1) - k2sn'( u, k)] '  ' d u  ( A l l )  
and  by setting sn( U, k)  = sin 0 with du  = do/[(  1 - k2 sin' 0) '  '1 the first relation (A9a)  
can be deduced. In order to get the second relation (A9b), we utilise (A8) in ( A l l )  
just obtained: 

= [ -1+1  -sn'(k- 'u ' ,  k ) ] '  ' d u '  

= [ ,1+1-k -2sn ' (u ' , k - ' ) ]1  ' d u '  

= ( l +  '1 ) '  ' d 8  
1 - k-'sin' 9 

by setting s n (  U', k-I) = sin 6, thus establishing (A9b).  
We now make our discussion more transparent from a viewpoint of analytic function 

theory of a complex variable (see Lakshmanan and  Hasegawa 1984, Hasegawa and 
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Adachi 1988). The argument is that the diamagnetic Kepler motion can be separated, 
in the weak-field limit, in terms of the elliptic cylindrical coordinates (Hasegawa et a1 
1989), where the mapping of the two coordinates (a ,  @ )  to their momenta ( P a ,  P p )  
can be singled out as a complex analytic function, 4‘+ Pc = P ( 5 ) :  

i = a + i @  Pi = Pa +iP, 

This function is two-valued on the complex 5 plane and regular except at 5 =  
i K ‘  ( K ‘ =  K ( k ’ ) :  the complete elliptic integral of the first kind with modulus k’ inside 
of the fundamental parallelogram of sn(5, k ) ) .  The Reimann surface on which P ( 5 )  
is representable as single-valued can be synthesised by joining two copies of the 5 
plane at two pairs of the cuts connecting four zeros of P ( 5 )  (A, B, C, D in figure 3 ( a )  
or ( b ) .  The two elementary cycles (closed path of Cauchy integration) to be chosen 
on this torus with genus 1 for the action integration 1 P ( 5 )  d l  are denoted by y ,  and 
y D ,  which can be identified with the segments AB and BC, respectively, in the figure. 
One has, indeed, 

1 2n 
J ( A )  = g P ( 5 )  d 5  = 7 IB, [ k 2 (  1 + A )  - dn2(@, k ’ ) ] ” ’  dp. (A14) 

More precisely, in (A13) 

and 

jAB d a  = . d a  for ‘4 > 0 

I,, ‘ d @  = j . d @  for .I > 0 

and  in (A14) IBc . d @  = . d @  for A > 0 

and  
K +Ti 

K - ~ n  

in which *to denote the two possible zeros of the integrand on the real axis inside 
[-K, K ]  and K’*  T~ for those on the shifted imaginary axis, 5 = K +i@, inside [0 ,2K’]  
as to the @-variable. To assure these representations it is enough to exploit the following 
two facts pertaining to the Jacobian elliptic functions. 

( i )  Identity 

1 s n ( K  + i K ’ + i &  k )  =- dn(i@, k)/cn(i@, k )  
k 
1 
k 

=- dn(@, k ‘ )  

(see Erdelyi el  a1 (1953) pp  344 and 346). 
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(ii) The analytic function P ( 5 )  defined in (A12),  outside of the rectangle ABCD 
(on each sheet of the Riemann surface) but inside of the fundamental parallelogram, 
is one-valued and  regular. 

This latter fact enables one to excute a parallel shift of the integration: for example 
for .A > 0, from that on the segment A'B' to the other on AB, i.e. 

7r 
J '  '( '4) in (35a)  (35h) eo = 

(A16) 
P ( a )  d a  in (A13). 

For this, it is remarked that the contour integral of P (  5 )  along the closed cycle A'B'BAA' 
vanishes, and that 

holds due  to the periodicity of the sn function (and  hence of the function P (  5 )  in one 
sheet) with period 2 K .  Observe, also, that by this parallel shift the representation (A13) 
of the action integral becomes such that it involves two caustics (i.e. the square-root 
zeros A and B of the integrand). 

The same kind of the parallel shift holds also for the P integration, for which the 
identity (A16) is used to relate J(,4) in (34) with (A14). 

Upon establishing the representations (A13) and (A14), it  is now easy to prove the 
identity 

J " ' ( , \ ) + J ( A )  = n (A181 

because, then, J " ' +  J ( A )  is identical to the contour integral of the single-valued analytic 
function P ( 5 )  on the Riemann surface along ABCDA with residue n which arises 
from the unique simple pole 5 = i K '  inside the contour. 
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